(10 Marks)

techniques.

USN

M.Tech. Degree Examination, June/July 2011 **VLSI System and Architecture**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

1 Explain the lower bounds on VLSI circuits for implementing parallel algorithms with VLSI chips. (10 Marks) b. What is cache memory? Explain with illustration direct and 4-way set associative mapping techniques.

What do you mean by instruction encoding? What factors are considered while encoding 2 instruction set? Explain the different encoding scheme by giving their general format. (10 Marks)

With a neat diagram, explain a 2-bit branch prediction scheme. (10 Marks)

Give the format for microinstruction and explain the fields. 3 (10 Marks) b. Design a 2's compliment multiplier using state table method. (10 Marks) Explain the 5 implementation stages for the DLX architecture with relevant block diagram.

b. Given an unpipelined processor with a 10 ns cycle time and pipeline latches with 0.5 ns latency. What are the cycle times of pipelined version of the processor with 2, 4, 8 stages if the data path logic is evenly divided among the pipeline stages? For the same processor how

many stages of pipelining are required to achieve a cycle time of 2 ns and 1 ns? (10 Marks) a. Explain dynamic scheduling with Tamasuco's algorithm. (10 Marks) b. Explain instruction-level parallelism with various types of dependencies giving illustration for each. (10 Marks)

What is pipelining? Discuss how pipelining is used in superscalar, super pipelined and 6 VLIW architectures. For a processor with base CPI of 1.0, assuming all references hit in the primary cache, and a clock rate is 5 GHz. Assume a main memory access time of 100 ns, including all the miss

handling. If the miss rate per instruction at the primary cache is 2%, how much faster will the processor be if we add a secondary cache with 5 ns access time and is large enough to reduce the miss rate to main memory to 0.5%? (10 Marks) 7 With the help of a block diagram, explain the features of the TMSC5X DSP processor.

(10 Marks) b. Discuss resource allocation with respect to a DSP processor. What are various mechanisms in which resource allocation is done? (10 Marks)

List and explain the memory addressing modes of a TMS 320 C5X DSP processor. (10 Marks) Discuss the purpose of scheduling operation for DSP. Explain various scheduling b.